Yaqing Jin 1,2Ye Yang 3,4,5Huibo Hong 1,2Xiao Xiang 1,2[ ... ]Ruifang Dong 1,2,*
Author Affiliations
Abstract
1 Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi’an 710600, China
2 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
3 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
4 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
5 The 29th Research Institute of China Electronics Technology Group Corporation, Chengdu 610029, China
6 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
7 e-mail: ml@semi.ac.cn
8 e-mail: szhang@ntsc.ac.cn
With energy–time entangled biphoton sources as the optical carrier and time-correlated single-photon detection for high-speed radio frequency (RF) signal recovery, the method of quantum microwave photonics (QMWP) has presented the unprecedented potential of nonlocal RF signal encoding and efficient RF signal distilling from the dispersion interference associated with ultrashort pulse carriers. In this paper, its capability in microwave signal processing and prospective superiority are further demonstrated. Both QMWP RF phase shifting and transversal filtering functionality, which are the fundamental building blocks of microwave signal processing, are realized. Besides good immunity to the dispersion-induced frequency fading effect associated with the broadband carrier in classical MWP, a native two-dimensional parallel microwave signal processor is provided. These results well demonstrate the superiority of QMWP over classical MWP and open the door to new application fields of MWP involving encrypted processing.
Photonics Research
2023, 11(6): 1094
夏施君 1,2,3许博蕊 1,2,3徐鹏飞 4包帅 4[ ... ]祝宁华 1,2,3,*
作者单位
摘要
1 中国科学院半导体研究所集成光电子学国家重点实验室,北京 100083
2 中国科学院大学材料科学与光电技术学院,北京 100049
3 中国科学院大学电子电气与通信工程学院,北京 100049
4 江苏华兴激光科技股份有限公司,江苏 徐州 221300
5 武汉敏芯半导体股份有限公司,湖北 武汉 430223
设计一种基于AlGaInAs材料的1.3 μm高速直调半导体激光器,该激光器采用脊波导、长度较短的腔和11个5 nm厚度的多量子阱结合30 nm厚度的缓变折射率分别限制异质结结构(GRIN-SCH),实现了低阈值、宽带宽和较大功率的光输出。采用均匀光栅和不对称腔面镀膜的方式实现了稳定的单纵模输出。最终制得的1.3 μm高速直调半导体激光器,在室温下,阈值电流为7.5 mA,3 dB小信号调制带宽可达25 GHz,大信号背靠背传输速率可达40 Gb/s,斜率效率为0.35 mW/mA,最大输出功率约为39 mW,边模抑制比可达40 dB。
激光器 1.3 μm直调激光器 宽带宽 大功率 低阈值 
光学学报
2022, 42(16): 1614001
Yaqing Jin 1,2Ye Yang 3,4Huibo Hong 1,2Xiao Xiang 1,2[ ... ]Ruifang Dong 1,2,*
Author Affiliations
Abstract
1 Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi’an 710600, China
2 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
3 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
4 The 29th Research Institute of China Electronics Technology Group Corporation, Chengdu 610029, China
5 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
6 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
7 e-mail: ml@semi.ac.cn
As the main branch of microwave photonics, radio-over-fiber technology provides high bandwidth, low-loss, and long-distance propagation capability, facilitating wide applications ranging from telecommunication to wireless networks. With ultrashort pulses as the optical carrier, a large capacity is further endowed. However, the wide bandwidth of ultrashort pulses results in the severe vulnerability of high-frequency radio frequency (RF) signals to fiber dispersion. With a time-energy entangled biphoton source as the optical carrier combined with the single-photon detection technique, a quantum microwave photonics method in radio-over-fiber systems is proposed and demonstrated experimentally. The results show that it not only realizes unprecedented nonlocal RF signal modulation with strong resistance to the dispersion but also provides an alternative mechanism to distill the RF signal out from the dispersion effectively. Furthermore, the spurious-free dynamic ranges of the nonlocally modulated and distilled RF signals have been significantly improved. With the ultra-weak detection and the high-speed processing advantages endowed by the low-timing-jitter single-photon detection, the quantum microwave photonics method opens new possibilities in modern communication and networks.
Photonics Research
2022, 10(7): 07001669
Tengfei Hao 1,2,3†Hao Ding 4†Wei Li 1,2,3Ninghua Zhu 1,2,3[ ... ]Ming Li 1,2,3,*
Author Affiliations
Abstract
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
4 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
5 Peng Cheng Laboratory, Shenzhen 518052, China
6 e-mail: ytdai@bupt.edu.cn
Dissipative solitons relying on the double balance between nonlinear and linear effects as well as cavity loss and gain have attracted increasing attention in recent years, since they give rise to novel operating states of various dissipative nonlinear systems. An optoelectronic oscillator (OEO) is a dissipative nonlinear microwave photonic system with a high quality factor that has been widely investigated for generating ultra-low noise single-frequency microwave signals. Here, we report a novel operating state of an OEO related to dissipative solitons, i.e., spontaneous frequency hopping related to the formation of dissipative microwave photonic solitons. In this operating state, dissipative microwave photonic solitons occur due to the double balance between nonlinear gain saturation and linear filtering as well as cavity loss and gain in the OEO cavity, creating spontaneous frequency-hopping microwave signals. The generation of wideband tunable frequency-hopping microwave signals with a fast frequency-hopping speed up to tens of nanoseconds is observed in the experiment, together with the corresponding soliton sequences. This work reveals a novel mechanism between the interaction of nonlinear and linear effects in an OEO cavity, extends the suitability and potential applications of solitons, and paves the way for a new class of soliton microwave photonic systems for the generation, processing, and control of microwave and RF signals.
Photonics Research
2022, 10(5): 05001280
Dapeng Liu 1,2Jian Tang 1,2Yao Meng 1,2Wei Li 1,2[ ... ]Ming Li 1,2
Author Affiliations
Abstract
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Science, Beijing 100049, China
A modulator is an essential building block in the integrated photonics, connecting the electrical with optical signals. The microring modulator gains much attention because of the small footprint, low drive voltage and high extinction ratio. An ultra-low Vpp and high-modulation-depth indium phosphide-based racetrack microring modulator is demonstrated in this paper. The proposed device mainly comprises one racetrack microring, incorporating a semiconductor amplifier, and coupling with a bus waveguide through a multimode interference coupler. Traveling wave electrodes are employed to supply bidirectional bias ports, terminating with a 50-Ω impedance. The on/off extinction ratio of the microring reaches 43.3 dB due to the delicately tuning of the gain. An 11 mV Vpp, a maximum 42.5 dB modulation depth and a 6.6 GHz bandwidth are realized, respectively. This proposed microring modulator could enrich the functionalities and designability of the fundamental integrated devices.
Journal of Semiconductors
2021, 42(8): 082301
Author Affiliations
Abstract
1 State Key Laboratory on Integrated Optoelectronics, Institution of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
The 4-level pulse amplitude modulation (PAM4) based on an 23 GHz ultrabroadband directly modulated laser (DML) was proposed. We have experimentally demonstrated that based on intensity modulation and direct detection (IMDD) 56 Gbps per wavelength PAM4 signals transferred over 35 km standard single mode fiber (SSMF) without any optical amplification and we have achieved the bit error rate (BER) of the PAM4 transmission was under 2.9 × 10–4 by using feed forward equalization (FFE).
Journal of Semiconductors
2020, 41(3): 032304
Tengfei Hao 1,2,3Yanzhong Liu 1,2,3Jian Tang 1,2,3Qizhuang Cen 4[ ... ]Ming Li 1,2,3,*
Author Affiliations
Abstract
1 Chinese Academy of Sciences, Institute of Semiconductors, State Key Laboratory on Integrated Optoelectronics, Beijing, China
2 University of Chinese Academy of Sciences, School of Electronic, Electrical, and Communication Engineering, Beijing, China
3 University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, China
4 Beijing University of Posts and Telecommunications, State Key Laboratory of Information Photonics and Optical Communications, Beijing, China
5 Universitat Politécnica de Valencia, ITEAM Research Institute, Photonics Research Labs, Valencia, Spain
6 University of Ottawa, Microwave Photonics Research Laboratory, Ottawa, Ontario, Canada
An optoelectronic oscillator (OEO) is a microwave photonic system that produces microwave signals with ultralow phase noise using a high-quality-factor optical energy storage element. This type of oscillator is desired in various practical applications, such as communication links, signal processing, radar, metrology, radio astronomy, and reference clock distribution. Recently, new mode control and selection methods based on Fourier domain mode-locking and parity-time symmetry have been proposed and experimentally demonstrated in OEOs, which overcomes the long-existing mode building time and mode selection problems in a traditional OEO. Due to these mode control and selection methods, continuously chirped microwave waveforms can be generated directly from the OEO cavity and single-mode operation can be achieved without the need of ultranarrowband filters, which are not possible in a traditional OEO. Integrated OEOs with a compact size and low power consumption have also been demonstrated, which are key steps toward a new generation of compact and versatile OEOs for demanding applications. We review recent progress in the field of OEOs, with particular attention to new mode control and selection methods, as well as chip-scale integration of OEOs.
optoelectronic oscillator microwave photonics Fourier domain mode-locking parity-time symmetry photonics integrated circuits 
Advanced Photonics
2020, 2(4): 044001
作者单位
摘要
1 中国科学院 半导体研究所 集成光电子学国家重点实验室, 北京 100083
2 中国科学院大学 微电子学院, 北京 100049
为了使激光器能够稳定工作, 设计并实现了一个控制速度快、精度高, 并且可调谐的温度控制系统。该系统使用ATmega328P为处理器, 通过粒子群算法自整定比例-积分-微分(PID)系数, 采用闭环负反馈的PID结构实现对激光器的温度控制。结果表明, 在本系统控制下, 激光器能在15s左右达到目标温度, 且到达目标温度后温度误差约为±0.01℃, 并可保持较长时间, 激光器输出功率波动很小, 方差仅为568.49μW。该系统对蝶形封装激光器的温度可以实现有效的温度控制。
激光技术 温控系统 粒子群算法 PID控制 优化 laser technique temperature control system particle swarm algorithm proportional integral differentiation control optimization 
激光技术
2019, 43(5): 650
Author Affiliations
Abstract
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
To overcome the beam squint in wide instantaneous frequency, we review a number of system-level optical controlled phase array antennas for beam forming. The optical delay network based on a fiber device in terms of topological structure of an N-bit optical switch, fiber grating, high-dispersion fiber, and vector-sum technology is discussed, respectively. Lastly, an integrated circuit is simply summarized.
230.2285 Fiber devices and optical amplifiers 060.3735 Fiber Bragg gratings 100.4999 Pattern recognition, target tracking 
Chinese Optics Letters
2019, 17(5): 052301
Zhike Zhang 1,2Yu Liu 1,2,*Junming An 1,2,3Yiming Zhang 1,2[ ... ]Ninghua Zhu 1,2
Author Affiliations
Abstract
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Henan Shijia Photons Technology Co., Ltd., Hebi 458000, China
Based on the hybrid integration technology, an ultra-compact and low cost transmitter optical subassembly module is proposed. Four directly modulated lasers are combined with a coarse wavelength division multiplexer operated at the O-band. The bandwidth for all channels is measured to be approximately 3 GHz. The 112 Gb/s transmission is experimentally demonstrated for a 10 km standard single mode fiber (SSMF), in which an optical isolator is used for avoiding the back-reflected and scattered light to improve the bit error rate (BER) performance. A low BER and clear eye opening are achieved for 10 km transmission.
250.5960 Semiconductor lasers 140.3518 Lasers, frequency modulated 
Chinese Optics Letters
2018, 16(6): 062501

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!